National Institutes of Health (Grant No. RR-01077) and the National Science Foundation (Grant No. 8714258) for funds for the purchase of the NMR spectrometers. We are most grateful to Professor T. J. Smith (Kalamazoo College, MI) for the use of his Perkin-Elmer 330 UV/VIS/NIR spectrophotometer.

Supplementary Material Available: Listings of positional parameters and their errors for the phenyl carbon atoms of $\mathbf{1}, 2$, and 3, the lattice solvent molecules of $\mathbf{1}$ and $\mathbf{3}$, and the $\mathrm{PF}_{6}{ }^{-}$atoms
of $\mathbf{3}$ (Tables S1, S2, and S3), thermal parameters (Tables S4, S5, and S6), complete listings of bond distances (Tables S7, S8, and S9) and bond angles (Tables S10, S11, and S12), electronic absorption spectral data for representative complexes of the type cis- and trans- $\left[\mathrm{Re}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2} \mathrm{X}_{2}(\mathrm{dppm})_{2}\right]^{0+}$ (Table S 13), and figures showing the full atomic numbering schemes for 2 and 3 (Figures S1 and S2) (29 pages); tables of observed and calculated structure factors (57 pages). Ordering information is given on any current masthead page.

The Origin of the Directing Effect in H_{2} Addition to Square-Planar d^{8} Complexes

Mark J. Burk, Martin P. McGrath, Ralph Wheeler, ${ }^{\dagger}$ and Robert H. Crabtree*
Contribution from the Department of Chemistry, Yale University, New Haven, Connecticut 06520. Received November 16, 1987

Abstract

Hydrogen adds to square-planar d^{8} complexes of the Vaska type [trans- $\operatorname{IrX}(\mathrm{CO})\left(\mathrm{PR}_{3}\right)_{2}$] to give oxidative addition products in which the H_{2} has added parallel to the $\mathrm{X}-\mathrm{Ir}-\mathrm{CO}$ axis. In principle, however, addition perpendicular to this axis should also be possible. Three models have been discussed to account for the apparent preference for parallel adducts. We show that in contrast to the chloro complex ($\mathrm{X}=\mathrm{Cl}$, parallel adduct formed), the methyl, phenyl, or hydride analogues give perpendicular adducts. In one case $(X=P h)$, the perpendicular adduct is formed at $-80^{\circ} \mathrm{C}$, but rearranges to the parallel adduct on warming via reductive elimination of H_{2} and readdition. These findings seem to invalidate the previous theoretical models that have been proposed to explain the direction of H_{2} addition. A new one is suggested that covers all the data gathered up to now.

Hydrogen may in principle add in one of two ways to a square-planar d^{8} complex, as shown in eq 1 for the case of Vaskas complex (1). The two H ligands are cis to one another in both products, as expected from a concerted process, but in one case (2) H_{2} is trans to Cl and CO , and in the other (3) H_{2} is trans to the PPh_{3} groups. For the parent complex $(\mathrm{X}=\mathrm{Cl})$, only the parallel adduct, $\mathbf{2}$, is observed.

In the formation of 2 and 3 , the H_{2} has added parallel and perpendicular, respectively, to the $\mathrm{Cl}-\mathrm{Ir}-\mathrm{CO}$ symmetry axis. We shall therefore refer to 2 and $\mathbf{3}$ as the "parallel" and "perpendicular" adducts. In cases such as 4 in which neither of the two directions is coincident with an axis of symmetry of the molecule, we will choose an axis and indicate the choice in parentheses, e.g., parallel (CO) means parallel to the $\mathrm{M}-\mathrm{CO}$ bond. Understanding the factors that determine which isomers are formed is a fundamental problem and may also be of help in rationalizing the course of asymmetric hydrogenation and other catalytic reactions.

Eisenberg et al. ${ }^{1}$ have found that the parallel (CO) adducts are the kinetic products in the addition of H_{2} to $4(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CN})$, and they discussed two possible reasons. One proposal involves

[^0]

5
increased overlap of $\sigma^{*}\left(\mathrm{H}_{2}\right)$ with the $\mathrm{d}_{\pi}(\mathrm{M})$ orbital through the involvement of $\pi^{*}(\mathrm{CO})$ in the transition state. This picture predicts that addition should always take place parallel to the best π-acceptor ligand (i.e., CO in $\mathbf{4}$, as observed). It also explains the formation of parallel adducts in H_{2} addition to 1 , and was consistent with most of the available data known at the time it was proposed. This model requires a transition state ${ }^{1 \mathrm{e}}$ closely resembling the square-planar starting material and unlike the trigonal-bipyramidal transition state of type 6 that we invoked.

In an alternative model, first suggested by Wolczanski and also considered by Eisenberg et al., ${ }^{1}$ addition should occur parallel to the highest trans effect ligand (see eq 9 and 10 and further discussion below).

We reported in 1983 that H_{2} addition to 5 gave the perpendicular ($\mathrm{P}-\mathrm{O}$) adduct 7a. ${ }^{2 a}$ In contrast, the parallel ($\mathrm{P}-\mathrm{O}$) adduct 7b would be expected on the basis of the ideas subsequently developed by Eisenberg et al.,' since the $\mathrm{Ph}_{2} \mathrm{PO}$ group is the better π-acceptor. We had proposed a different picture: that stereochemical preferences within a trigonal-bipyramidal transition state (or intermediate) of type 6 is the critical factor in deciding which isomer is formed. For example, in eq 2 we postulated that 7 a is formed rather than 7 b because 6 a is stabler than $\mathbf{6 b}$. Several useful theoretical studies of H_{2} addition are available. ${ }^{3 a}$

[^1]

The purpose of this paper is to report the result of experiments designed to test these and one other unpublished model for predicting the direction of H_{2} attack. We now believe that all three models are flawed, and so propose a new one that rationalizes all the cases studied to date.

Results and Discussion

We recently reported a good synthetic route to $[\mathrm{IrCl}(\mathrm{CO})$ $\left.\left(\mathrm{PMe}_{3}\right)_{2}\right](1 a)^{2 a}$ and, in connection with some alkane activation experiments, made the corresponding methyl complex $\mathbf{1 b}$ $\left[\operatorname{IrMe}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right.$] by the route shown in eq 3, followed by sublimation. The methyl complex 1b has also been reported by Bennett et al., ${ }^{4}$ who made it in a similar way.

$$
\begin{equation*}
\underset{\mathbf{1 a}}{\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}} \xrightarrow{\text { LiMe }} \operatorname{IrMe}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2} \tag{3}
\end{equation*}
$$

The Direction of \mathbf{H}_{2} Addition. Our interest ${ }^{2}$ in the H_{2} addition problem led us to determine the stereochemistry of H_{2} addition to $\mathbf{1 b}$. In contrast to all other complexes of the Vaska type studied to date, the perpendicular adduct 8 was formed, even at $-80^{\circ} \mathrm{C}$.

The adduct $\mathbf{8}$ is remarkable in having a methyl group cis to two hydride ligands. A number of related cases are known ${ }^{5 a-c}$ in which cis alkyl hydride complexes have been found in the (trimethylphosphine) iridium(III) system. It has been suggested that the kinetic stability of such complexes is due to their coordinative inertness, the small and tightly bound PMe_{3} group being less easily lost than are larger ligands, such as PPh_{3}. The corresponding PPh_{3} analogue of 8 loses CH_{4} at $-40{ }^{\circ} \mathrm{C}$. ${ }^{6}$ Theoretical studies ${ }^{36}$ have rationalized faster reductive elimination in a 16 e than an $18 e^{6} d^{6}$ species.

The stereochemistry of 8 is clearly defined by the ${ }^{1} \mathrm{H}$ NMR spectrum. In particular, a doublet at $\delta 1.14\left({ }^{2} J(\mathrm{P}, \mathrm{H})=7.7 \mathrm{~Hz}\right)$ is assigned to the PMe_{3} groups. The lack of virtual coupling shows these groups are cis. A complex resonance at $\delta-10.05$ is assigned

[^2]Table I. Direction of Addition to Vaskas Complex

	parallel	perpendicular ${ }^{a}$
$\mathrm{IrClCO}\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{1 a})$	$\mathrm{H}_{2}, \mathrm{CO}$	
$\mathrm{IrMeCO}\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{1 b})$	PMe_{3}	$\mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{MA}$
$\mathrm{IrPhCO}\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{1 c})$	$\mathrm{H}_{2}($ therm $)$	$\mathrm{H}_{2}($ kinetic $)$
$\mathrm{IrClCO}\left(\mathrm{PPh}_{3}\right)_{2}$	$\mathrm{H}_{2}, \mathrm{CO}^{13}$	
$\mathrm{IrBrCO}\left(\mathrm{PPh}_{3}\right)_{2}$	$\mathrm{H}_{2}{ }^{13}$	TCNE^{16}
$\mathrm{IrHCO}\left(\mathrm{PPh}_{3}\right)_{2}$		$\mathrm{D}_{2}{ }^{17} \mathrm{SiPh}_{3} \mathrm{H}^{18}$
		FMN^{11}
$\mathrm{IrMe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$		$\mathrm{H}_{2}^{5 \mathrm{~b}, 12}$

${ }^{a} \mathrm{MA}=$ maleic anhydride, $\mathrm{FMN}=$ fumaronitrile.
to the Ir-H groups split in an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ pattern with trans phosphorus $(J(\mathrm{P}, \mathrm{H}$ trans $)=130 \mathrm{~Hz})$ as well as by the Ir- CH_{3} protons. The methyl group resonates as a triplet $\left({ }^{3} J(\mathrm{P}, \mathrm{H})=12 \mathrm{~Hz}\right)$ of triplets $\left({ }^{3} J(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}\right)$ which can be assigned to the Ir- CH_{3} group split by two cis-phosphorus and two cis Ir-H nuclei.

The perpendicular adduct is certainly formed from $\mathbf{1 b}$, but is it the kinetic product? Conceivably, H_{2} might have added to give the parallel adduct, which then rapidly rearranges. We were able to exclude this possibility for the case of the phenyl complex $\left[\operatorname{Ir}(\mathrm{Ph})(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right](1 \mathrm{c})$ synthesized by the route of eq 3 but with PhLi . 1c is completely converted to the perpendicular adduct 9 by reaction with H_{2} at $-80^{\circ} \mathrm{C}$. At $25^{\circ} \mathrm{C}$, this adduct undergoes a first-order rearrangement to give the parallel adduct 10 with a $t_{1 / 2}$ of 10 min at $25^{\circ} \mathrm{C}$.

The identities of 9 and 10 follow from the ${ }^{1} \mathrm{H}$ NMR spectrum. In particular, 9 shows an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{Ir}-\mathrm{H}$ resonance pattern at δ -9.78 similar to that of the Ir-Me analogue 8 , with a ${ }^{2} J(\mathrm{P}, \mathrm{H}$ trans $)$ of 135 Hz . The PMe resonance is a simple doublet $\left({ }^{2} J(\mathrm{P}, \mathrm{H})=\right.$ $8.3 \mathrm{~Hz})$ at $\delta 1.13$, showing no sign of virtual coupling. In contrast 10 shows two $\mathrm{Ir}-\mathrm{H}$ resonances, one at $\delta-9.22$ and the other at $\delta-12.2$. These are mutually coupled, and the value of ${ }^{2} J(\mathrm{H}, \mathrm{H})$, 5.3 Hz , is fully consistent with a classical dihydride structure as expected for H_{2} addition to a d^{8} species, and also proves that inequivalent Ir-H groups are present in the same complex. The PMe resonance at $\delta 1.24$ is virtually coupled ($J_{\text {app }}=3.8 \mathrm{~Hz}$), showing that these groups are mutually trans.

Two mechanisms (eq 6 and 7) for the isomerization of $\mathbf{9}$ to $\mathbf{1 0}$ seem most reasonable. The first involves reductive elimination and re-addition of $\mathrm{Ph}-\mathrm{H}$. Since the solvent is $\mathrm{C}_{6} \mathrm{D}_{6}$ and no

deuterium appears in $\mathbf{1 0}$, any such mechanism would require an $\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}$ intermediate, as proposed by Jones and Feher ${ }^{7 a}$ in a related system. We were able to rule out this process by studying the D_{2} adduct of 9 . This should give an $\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}$ complex that on re-addition to the metal should lead to the incorporation of deuterium into the $\mathrm{Ir}-\mathrm{Ph}$ group, and of protium into the $\mathrm{Ir}-\mathrm{H}$ groups of 10 . This is not observed: $d_{2}-9$ gives $d_{2}-10$ with the label entirely in the Ir-H positions. The second mechanism (eq 7) seems to be the correct one. When $d_{2}-9$, prepared from 1 c and D_{2} at $-78^{\circ} \mathrm{C}$, is placed under 1 atm of H_{2} and allowed to warm to room temperature, most of the deuterium is lost from 9 on the time scale of several tens of seconds to give largely $d_{0}-9 . d_{0}-9$ only rearranges to $d_{0}-10$ on the time scale of several tens of minutes. This is most

[^3]Table II. NMR Data ${ }^{a}$ Characterizing the Direction of H_{2} Addition

	${ }^{1} \mathrm{H}$ NMR	${ }^{13} \mathrm{C} \mathrm{NMR}^{6}$	${ }^{31} \mathrm{P}$ NMR
$\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}(1 \mathrm{a})$	-18.9, dt (4.9 $\left.{ }^{\text {e }}, 20.5^{d}\right), \mathrm{IrH},-7.8$, dt (4.9, $\left.14.7^{d}\right), \mathrm{IrH}, 1.4, \mathrm{t}$ (3.65 ${ }^{\text {e }}$), PMe		
$\mathrm{IrMe}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{1 b})$	$\begin{aligned} & -10.05, \mathrm{dd}(17,130)^{\prime}, \operatorname{IrH}, 0.21, \mathrm{tt}\left(1.8^{8}, 19.7, \mathrm{t}(16.6), \mathrm{PMe}\left(12^{h}\right), \mathrm{Me},\right. \\ & \left.1.14,7.7^{j}\right) \text {, PMe } \end{aligned}$	-41.6, s, Ir-Me	
$\mathrm{IrPh}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}(1 \mathbf{c})$			-60.1
(thermodynamic isomer) 10	-12.2 dt (5.3 $\left.3^{c}, 17.2^{d}\right), \mathrm{IrH},-9.2$ dt (5.3c, 21.2d), IrH, 1.24, t (3.8 $)$, PMe, 7.48 and $8.04, \mathrm{c}, \mathrm{Ar}$		-49.5
$\mathrm{IrMe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$	-9.35, dd (17, 128.6)f, IrH, 0.26, t (10.7 ${ }^{\text {h }}$), IrMe, 7.2-8.0, c, Ar		

${ }^{a}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$ and at $25^{\circ} \mathrm{C}$ unless stated. ${ }^{b}$ Gated ${ }^{1} \mathrm{H}$ decoupled. ${ }^{c}{ }^{2} J(\mathrm{H}, \mathrm{H}) .{ }^{d}{ }^{2} J\left(\mathrm{P}, \mathrm{H}\right.$ cis). ${ }^{e} J_{\text {apparent }}$ for the virtually coupled triplet observed. ${ }^{f} J_{\text {apparent }}$ for the $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ pattern observed. ${ }^{8}{ }^{3} J(\mathrm{H}, \mathrm{H}$ cis $) . \quad{ }^{3} J(\mathrm{P}, \mathrm{H}$ cis $) . \quad{ }^{2} J(\mathrm{P}, \mathrm{H})$.
readily explained by a slow loss of H_{2} from 9 to give the starting complex 1c. This has the choice of adding H_{2} in one of two ways, to give 9 or $\mathbf{1 0}$. Since we know that initially essentially only 9 is formed ($>98 \%$), we can say that 1c normally goes back to 9 . accounting for the rapid formation of $d_{0}-9$. Occasionally, however,

1c must add H_{2} to give the parallel isomer 10 , which, being more thermodynamically stable, accumulates until it is essentially the only species ($>98 \%$) present. A similar mechanism has been proposed by Eisenberg et al. ${ }^{1}$ for their related isomerization reactions.

In confirmation of this picture, we found that when the isomerization was studied by ${ }^{31} \mathrm{P}$ NMR spectroscopy, a small ($\sim 2 \%$ intensity) peak was observed at -24.4 ppm during the reaction. This position corresponds to the resonance position expected for 1c. When the isomerization was complete, no $\mathbf{1 c}$ was detected.

The next question that arises is whether formation of the perpendicular isomer is unique to the PMe_{3} form of Vaska's complex. An argument could be made that PMe_{3}, being sterically less demanding than PPh_{3}, can more easily become cis and so $\left[\operatorname{IrX}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right]$ can more easily form the parallel isomer. To test this idea, we studied $\operatorname{MeIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$. Atwood et al. ${ }^{6}$ had previously found that H_{2} addition to this complex leads to loss of methane and formation of $\mathrm{IrH}_{3}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, and they naturally postulated $\mathrm{IrMeH} \mathrm{M}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ as the most reasonable intermediate but did not determine its stereochemistry. This we have now done by passing H_{2} into a solution of $\operatorname{IrMe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ at $-82^{\circ} \mathrm{C}$. The expected dihydride intermediate is stable at this temperature and we find that the perpendicular isomer, analogous to 8, is formed. This assignment follows from the ${ }^{1} \mathrm{H}$ NMR spectrum. For example, the Ir-H groups resonate in the familiar $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ pattern coupled with the two cis phosphorus nuclei (J $(\mathrm{P}, \mathrm{H}$ trans $)=129 \mathrm{~Hz}$). The $\mathrm{Ir}-\mathrm{CH}_{3}$ group resonates at $\delta 0.25$ as a triplet of triplets $\left({ }^{3} J(\mathrm{P}, \mathrm{H}\right.$ cis $\left.)=10.7 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H}, \mathrm{H}^{\prime}\right)=2 \mathrm{~Hz}\right)$. On warming to $0^{\circ} \mathrm{C}$, loss of methane begins to occur and the resulting $\mathrm{Ir} \mathrm{H}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ is trapped by the excess H_{2} present to
give the known ${ }^{6} f a c$ - $\left[\mathrm{IrH}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\right]$, the resonances for which grow in above $0^{\circ} \mathrm{C}$. With use of D_{2} it has been determined that the perpendicular adduct is formed from $\left[\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]{ }^{76}$

These results suggest that stereoelectronic and not steric effects are important in determining the direction of H_{2} addition. We have seen that the nature of the X group in $\left[\operatorname{IrX}(\mathrm{CO}) \mathrm{L}_{2}\right.$] is significant, and so we looked at H_{2} addition to $\mathrm{Ir} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}$. which should give the parallel adduct as the PPh_{3} analogue is known to do. This adduct is indeed formed as shown in eq 8 . The product 11 is a stable, isolable white solid and shows no tendency to isomerize to the perpendicular isomer in solution, although it does decompose slowly in solution even under N_{2} over several weeks.

The stereochemistry shown follows from the ${ }^{1} \mathrm{H}$ NMR spectrum. The Ir-H resonances at $\delta-7.8$ (trans to CO) and $\delta-18.9$ (trans to Cl) show mutual coupling (${ }^{2} J\left(\mathrm{H}, \mathrm{H}^{\prime}\right)=4.9 \mathrm{~Hz}$) as well as coupling to two cis phosphorus nuclei (${ }^{2} J(\mathrm{P}, \mathrm{H}$ cis $)=20.5$ and 14.7 Hz , respectively). The PMe resonance at $\delta 1.4$ shows a virtual coupling pattern ($J_{\text {app }}=3.65 \mathrm{~Hz}$) appropriate for a trans arrangement of these ligands. These spectral data are very close to those reported for the $\mathrm{PMe}_{2} \mathrm{Ph}$ analogue. ${ }^{5 \mathrm{~d}}$

The Origin of the Directing Effect. The results we have obtained are summarized in Table I. They clearly rule out the proposal that H_{2} should always add parallel to any $\mathrm{Ir}-\mathrm{CO}$ bond present. We also considered another model, based on an unpublished suggestion by Wolczanski, ${ }^{82}$ and also briefly considered by Eisenberg et al. ${ }^{1}$ and illustrated in eq 9 and 10 . Consider a d^{8} species $M\left(L_{1}\right) L_{3}$ where L_{1} has a high trans effect. The argument used to explain preferential substitution of L by an incoming ligand L_{i} at a position trans to L_{t} is that L_{t} prefers to occupy an equatorial site in the 5 -coordinate transition state (or intermediate) shown. The extension to the case of H_{2} addition is shown in eq 10 .

Our results apparently exclude this explanation because CO , Me , and Ph are all high trans effect ligands. $\left[\mathrm{MeIr}(\mathrm{CO}) \mathrm{L}_{2}\right]$ and $\left[\operatorname{Ph} \operatorname{Ir}(\mathrm{CO}) \mathrm{L}_{2}\right]$ should therefore show a very strong tendency to give the parallel adducts, but this is not observed. ${ }^{8 b}$

We previously suggested that the direction of addition is determined by the relative stability of two putative 5 -coordinate species of types 12a and 12b. Only if they are transition states is this necessarily true. Now that we know that H_{2} complexes are common, it is probably more reasonable to assume that 12a and 12b are true intermediates instead of transition states (see eq 11). We have seen that H / D exchange with free D_{2} is faster

than the rearrangement of the kinetic (13a) to the thermodynamic isomer (13b) in the case of $\mathrm{H}_{2} \operatorname{IrPh}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}$, and so the rearrangement probably goes through the square-planar starting material. This implies that k_{ab} is slow relative to k_{1}. We do not know if the kinetic ratio of $\mathbf{1 3 a} / \mathbf{1 3 b}$ is mainly decided by $k_{1 \mathrm{a}} / k_{1 \mathrm{~b}}$ or $k_{2 \mathrm{a}} / k_{2 \mathrm{~b}}$, although the latter choice seems most reasonable. Of course, by the Hammond postulate, the relative stabilities of unstable intermediates, such as 12 a and $\mathbf{1 2 b}$ will affect both $k_{\mathrm{la}} / k_{1 \mathrm{~b}}$ and $k_{2 \mathrm{a}} / k_{2 \mathrm{~b}}$, and so our original suggestion may still have some validity.

Isomers such as $\mathbf{1 3 c}$ are never observed in these reactions. 13c is accessible from 12 by a pseudorotation/oxidation addition sequence if the H_{2} ligand is allowed to become axial. If intermediates such as 12 do exist, we are entitled to ask why 13 c is not seen. As we saw above in k_{ab} and will meet again later, pseudorotation in 5-coordinate adducts is often relatively slow so our observations are not unexpected.

13c
Only if 12a and $\mathbf{1 2 b}$ could be directly observed could we verify this picture and try to find out which of the rate constant ratios in eq 11 are important in determining the outcome. In the absence of these data, we can only fall back on a plausible analogy. As described below, we have tried to make 5 -coordinate adducts with alkenes and ligands such as PMe_{3} to see whether these have the same stereochemistry as we observed for the H_{2} adducts. Of course, these ligands differ substantially in steric and electronic character from H_{2}, but we were still interested to see if any general trends emerge. To anticipate our results, we find that strong π-acceptors (e.g., TCNE) tend to prefer perpendicular addition, and strong σ-donors, such as PMe_{3}, tend to prefer parallel addition; as we have seen, a ligand that is both a π-acceptor and a σ-donor, such as H_{2}, can add in either direction according to the nature of the X ligand. We rely on published theoretical studies ${ }^{9}$ to

[^4]identify the important interactions present and this has led to a picture that seems to account for the data accumulated to date. Extended Huckel (EH) studies have shown that there are three important interactions in H_{2} addition to $\mathrm{d}^{8} \mathrm{ML}_{4}$ species. ${ }^{9}$ The first is a 4 e repulsive interaction between the filled $\mathrm{d}_{z^{2}}$ orbital and the filled $\mathrm{H}_{2}(\sigma)$; this opposes the oxidative addition. As a pair of ligands L^{\prime} bend back to reach the transition state, this repulsive interaction is reduced if L^{\prime} is a good π-acceptor ligand because the metal $\mathrm{d}_{z^{2}}$ orbital is stabilized. This is the factor that favors addition when $\mathrm{L}^{\prime}=\mathrm{CO}$ and, taken in isolation, it predicts that parallel adducts should always be formed in an addition to Vaska's complex. Experimentally, this is not always the case and so we must look at the other interactions found in the EH studies.

The second is a $\mathrm{M}\left(\mathrm{d}_{\pi}\right)$ to $\mathrm{H}_{2}\left(\sigma^{*}\right)$ back-donation that cleaves the $\mathrm{H}-\mathrm{H}$ bond and so encourages addition. The filled metal d orbital involved (largely $\mathrm{d}_{y 2}$ if we define the principal axis of the TBP intermediate as x and the direction of approach of the H_{2} as z) also interacts with the L' ligands but via their σ rather than their π orbitals. Strong σ-bonding ligands, such as tertiary phosphines, probably destabilize the filled $\mathrm{d}_{y z}$ orbital very effectively, and so this encourages M to $\mathrm{H}_{2}\left(\sigma^{*}\right)$ back-bonding and therefore favors perpendicular oxidative addition. We refer to this effect as homo-directed oxidative addition because it is the metal homo that decides the outcome. This cannot be studied effectively by EH methods because the calculated energy of the $\mathrm{H}_{2}\left(\sigma^{*}\right)$ orbital is much higher than the observed value, and so the back-bonding would be underestimated.

The third reaction that has been identified is donation from the filled $\mathrm{H}_{2}(\sigma)$ into the empty $\mathrm{M}\left(\mathrm{p}_{z}\right)$ orbital in the transition state. The presence of π-donors, such as Cl^{-}, in the square plane destabilizes the $\mathrm{M}\left(\mathrm{p}_{2}\right)$ lumo. By bending of the π-donor out of the plane, this destabilizing interaction is reduced. Therefore when Cl and CO bend out of the plane, we can refer to lumo-directed oxidative addition.

To summarize the argument, it is the nature of the equatorial ligands, 1 and 3 in 12a and 2 and 4 in 12b, that controls the direction of addition. We believe that three effects are important.
(i) Equatorial ligands that are good π-acceptors (CN and CO) stabilize the filled $\mathrm{d}_{z^{2}}$ orbital and reduce the 4 e repulsive interaction between it and $\mathrm{H}_{2}(\sigma)$ and so encourage H_{2} addition. ${ }^{9}$ An alternative way of thinking of this is to argue that π-acceptor ligands prefer to be in the equatorial plane of a TBP d^{8} species.
(ii) Equatorial ligands that are good σ-donors make the metal more π-basic by raising the energy of the $d_{y z}$ orbital, which back-bonds more effectively into the $\mathrm{H}_{2}\left(\sigma^{*}\right)$ and cleaves the $\mathrm{H}-\mathrm{H}$ bond more efficiently.
(iii) When equatorial ligands are good π-donors, the $\mathrm{M}\left(\mathrm{p}_{2}\right)$ orbital is stabilized and the oxidative addition encouraged.

When H and CO are mutually trans, factor (ii) decides the result and the homo-directed perpendicular adduct is observed. When Cl and CO are mutually trans, then factors (i) and (iii) predominate and the lumo-directed parallel adduct is observed.

This model resembles our earlier one in emphasizing factors that lead to changes in the relative stabilities of $\mathbf{1 2 a}$ with respect to 12b, but it also goes on to consider the relative π-donor character of the metal in the two different transition states, however, and here we are looking at an interaction that alters the ratio of $k_{1 \mathrm{a}}$ and $k_{1 b}$. If this analysis is right, it is the second kinetic factor that is chiefly responsible for causing the changeover from parallel to perpendicular H_{2} adduct formation on going from $\mathrm{X}=\mathrm{Cl}$ to $\mathrm{X}=\mathrm{Me}$ or Ph in $\left.\left[\operatorname{IrX}(\mathrm{CO}) \mathrm{L}_{2}\right)\right]$.

Alkene and Related Adducts of 1. As discussed above, we have also looked at some alkene adducts of $\mathbf{1}$ to see if the direction of alkene addition is the same as that of H_{2} addition.

Data from the literature is not uniformly encouraging. For example, although $\left[\operatorname{IrBr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ gives a parallel H_{2} adduct, it gives a perpendicular TCNE adduct. ${ }^{10}$ On the other hand,

[^5] munication, 1986. (f) Hay, P. J. J. Am. Chem. Soc. 1987, 109, 705-10.
$\left[\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ gives a perpendicular H_{2} adduct (as would be predicted from the discussion in the last section) and gives a perpendicular fumaronitrile adduct. ${ }^{11}$

We looked at $\left[\mathrm{IrMe}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right]$ (1b) as having minimal steric effects that might otherwise obscure the conclusions. The complex reacts rapidly with $\mathrm{C}_{2} \mathrm{H}_{4}$ to give an adduct. Unfortunately it was not possible to be completely certain of the stereochemistry of this adduct. The incompletely virtually coupled PMe resonance at $\delta 1.21\left(J_{\text {app }}=4 \mathrm{~Hz}\right)$ is the best evidence that the perpendicular isomer is formed. A definitive characterization was possible only for the maleic anhydride (MA) adduct, which is unambiguously perpendicular. This is shown most clearly by the formation of two isomers $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$, in both of which virtual coupling of the PMe_{3} groups is lost. The parallel adduct would be expected to give only one isomer in which virtual coupling is retained. It is notable that $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ do not exchange on the

14a
14 b
NMR time scale at $25^{\circ} \mathrm{C}$. This suggests that the adduct may have considerable metalacyclopropane character, and so the alkene does not undergo rapid rotation. This would in turn suggest that the important orienting factor in this case is the metal $\mathrm{d}_{y z}$ to alkene $(\mathrm{C}=\mathrm{C}) \pi^{*}$ back-donation (this is the second of the two factors we identify as being important in H_{2} addition). The fact that $\left[\operatorname{IrBr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ gives a perpendicular TCNE adduct (its H_{2} adduct is parallel) can be rationalized on the same basis. The direction of addition for the strongly π-accepting TCNE is dominated by the metal to $\mathrm{C}=\mathrm{C} \pi^{*}$ component of the bonding, not the stabilization of $\mathrm{d}_{z^{2}}$ and p_{2}. For H_{2} addition, the latter seems to be at least as important as the former in deciding the direction of H_{2} addition.

We also added PMe_{3} to $\mathbf{1 b}$ and found that the parallel adduct ${ }^{12}$ is formed, in contrast to the perpendicular adduct formed with H_{2}. This difference can be explained by noting that PMe_{3} is a poor π-acceptor. For such a ligand, the 4 e repulsive interaction mentioned above will dominate the situation, and the parallel adduct will tend to be formed by lumo control.

The stereochemistry of the adduct follows from the spectral data for the isolable, white $\operatorname{Ir} \mathrm{Me}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{3}$. The complex contains two equivalent and virtually coupled PMe_{3} groups (δ 1.63, $J_{\text {app }}=3.8 \mathrm{~Hz}$) as well as a single isolated $\mathrm{PMe}_{3}\left(\delta 1.53, \mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{H})\right.$ $=9.8 \mathrm{~Hz})$. The Ir-Me group shows a doublet of triplets $\left({ }^{3} J(\mathrm{P}, \mathrm{H})\right.$ axial $=3.3 \mathrm{~Hz},{ }^{3} J(\mathrm{P}, \mathrm{H})$ equatorial $\left.=6.6 \mathrm{~Hz}\right)$ as expected for coupling to one equatorial and two axial PMe_{3} phosphorus nuclei.

The direction of addition therefore depends on the electronic character of the addendum. Neither TCNE nor PMe_{3} are good models for H_{2}. The direction of addition for TCNE is dominated by metal to ligand back-bonding and is therefore homo-directed and for PMe_{3} by minimizing the 4 e repulsion effects (lumo-directed). H_{2} itself lies somewhere between these two extremes and so shows sensitivity to such relatively small effects as changing

[^6]X from halide to Me, Ph, or H .
Although only two cases have been studied, CO follows H_{2} in the direction of H_{2} addition, a parallel adduct being known for $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}{ }^{13}$ and $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}{ }^{2 b}$

Other Adducts of $\mathbf{1 b}$. The addition of excess anhydrous HCl to $\mathbf{1 b}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ gives the known ${ }^{14}$ cis, trans- $\left[\mathrm{IrHCl}_{2}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right]$. Presumably, $\mathbf{1 b}$ protonates to give the reactive 16 e cation $\left[\mathrm{IrHMe}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$, which rapidly loses CH_{4}. Addition of Cl^{-}and HCl gives the final product.

The addition of methyl iodide to a solution of $\mathbf{1 b}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ gave the colorless cis.trans- $\left[\mathrm{IrIMe}_{2}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right]$, the ${ }^{1} \mathrm{H}$ NMR spectrum of which indicated the formation of the single isomer shown. The PMe_{3} groups are virtually coupled ($\delta 1.27, J_{\text {app }}=$ 3.8 Hz). The Ir-Me groups are inequivalent ($\delta 0.51$ and 0.49) and coupled to two phosphorus nuclei. The mechanism of this reaction may be an $\mathrm{S}_{\mathrm{N}} 2$ attack as is known ${ }^{15}$ for the chloro analogue 1a, and so not relevant to the problem of concerted additions. We expect MeI addition to 1 b to be trans, and indeed, only one isomer of the $\mathrm{CD}_{3} \mathrm{I}$ adduct is observed, although we were not able to determine its stereochemistry unambiguously.

1b failed to react with benzene on reflux for 3 h . Similarly, the phenyl analogue $\mathbf{2 c}$ failed to react with $\mathrm{C}_{6} \mathrm{D}_{6}$ under the same conditions.

Conclusion

We have shown that the current models are inadequate to explain the stereochemistry of the H_{2} adducts formed by d^{8} square-planar complexes. We propose a new model that seems to cover all the examples known to date. The model also rationalizes the effect of changing the addendum from H_{2} to such species as FMN and PMe_{3}. The direction of addition of a strongly π-acceptor addendum will be dominated by factor (ii) discussed above, and perpendicular adducts will be formed even for $\mathrm{IrCl}-$ (CO) L_{2}. For a strongly σ-donating addendum such as PMe_{3}, factors (i) and (iii) will dominate and parallel adducts will be formed even for $\operatorname{IrMe}(\mathrm{CO}) \mathrm{L}_{2}$. This work suggests how rational syntheses of various stereoisomers of $\mathrm{d}^{6} \mathrm{ML}_{6}$ complexes can be planned. Further endeavors along these lines should provide a searching test of the proposed directivity effects.

Experimental Section

Preparative work was performed under purified Ar in Schlenk apparatus.

Methyl(carbonyl)bis(trimethylphosphine) Iridium(I). To [IICl(CO)$\left.\left(\mathrm{PMe}_{3}\right)_{2}\right]$ ($1 \mathbf{a}, 384 \mathrm{mg}, 0.94 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{~mL})$ was added MeLi (1.28 mL of a $1.1 \mathrm{M} \mathrm{Et}_{2} \mathrm{O}$ solution, 1.41 mmol) at room temperature. The mixture was stirred for 45 min and filtered through Celite, and the resulting yellow solution transferred to an oven-dried sublimation apparatus. The solvents were carefully removed under reduced pressure and the residue sublimed at $50^{\circ} \mathrm{C}$ ($10^{-3} \mathrm{Torr}$) for $3-4 \mathrm{~h}$. A submersible pump circulated ice water through the cold finger of the sublimator (using water at $25^{\circ} \mathrm{C}$ reduces the yield). The product was collected as very air sensitive, bright yellow crystals in 71% yield (0.26 mg). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{21} \mathrm{P}_{2} \mathrm{OI}$ r: C, 24.81; H, 5.47. Found: C, 24.95; H, 5.39. ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta 0.43, \mathrm{t}\left({ }^{3} J(\mathrm{P}, \mathrm{H}) \mathrm{cis}\right)=9.8 \mathrm{~Hz}\right)$, IrMe; $1.29, \mathrm{t}$ $\left({ }^{2} J(\mathrm{P}, \mathrm{H})=3.3 \mathrm{~Hz}\right.$), PMe. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.8, \mathrm{~s}, \mathrm{IrMe}$; $16.4, \mathrm{t}$ $\left({ }^{2} J(\mathrm{P}, \mathrm{C})=17.4 \mathrm{~Hz}\right)$, PMe; 187.2, $\left({ }^{2} J(\mathrm{P}, \mathrm{C})=10 \mathrm{~Hz}\right), \mathrm{CO} .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, relative to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$): -23.65 ppm .

[^7]Phenyl(carbonyl)bis(trimethylphosphine)iridium(I). To [$\mathrm{IrCl}(\mathrm{CO})$ $\left(\mathrm{PMe}_{3}\right)_{2}$] ($1 \mathrm{a}, 629 \mathrm{mg}, 1.54 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(30 \mathrm{~mL})$ was added PhLi (0.93 mL of a 2 M solution in $70: 30 \mathrm{v} / \mathrm{v}$ cyclohexane/ether, 1.85 mmol), and the mixture was stirred for 40 min at $25^{\circ} \mathrm{C}$. The resulting solution was filtered through Celite and concentrated under reduced pressure to ca. 3 mL . Heptane (8 mL) was added to precipitate the product as a very air sensitive solid in 69% yield (478 mg). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{P}_{2} \mathrm{OIr}$: C, $34.74 ; \mathrm{H}, 5.16$. Found: $\mathrm{C}, 34.55 ; \mathrm{H}, 5.13 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.10$, $\mathrm{t}\left({ }^{2} J(\mathrm{P}, \mathrm{H})=3.4 \mathrm{~Hz}\right), \mathrm{PMe} ; 7.01, \mathrm{tt}, 7.28, \mathrm{t}, 7.46$, dd, para, meta, and ortho H. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: -24.4 ppm .

Dihydrogen Adducts of Vaska's Complex 1. Through a solution of 1 (0.05 mmol) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ in an NMR tube was bubbled $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 5 min . The solution turned from yellow to colorless and the ${ }^{1} \mathrm{H}$ NMR spectrum was immediately recorded. The data reported in Table II show the spectral characteristics of the adducts which characterize the direction of addition in each case. The isomerization of 9 to $\mathbf{1 0}$ was most conveniently followed by ${ }^{31} \mathrm{P}$ NMR spectroscopy (see

Table II). During the isomerization a peak was observed for IrPh$(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}$ at -24.4 ppm . Only one of these adducts, $\left[\mathrm{H}_{2} \mathrm{ClIr}\right.$ (CO) $\left(\mathrm{PMe}_{3}\right)_{2}$] was stable enough to analyze. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{20} \mathrm{P}_{2} \mathrm{OClIr}: \mathrm{C}, 20.50 ; \mathrm{H}, 4.92$. Found: C, 20.51; H, 4.84.

Other Adducts of $\mathbf{1 b}$. Anhydrous HCl was bubbled into [IrMe$(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}$] (1b, $\left.13.9 \mathrm{mg}, 0.036 \mathrm{mmol}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ in an NMR tube, and the ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. Quantitative conversion to the known cis,trans- $\left[\mathrm{IrHCl}_{2}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right]$ was indicated by the spectral data: $-17.08, \mathrm{t}(J=12.8 \mathrm{~Hz}), \mathrm{Ir}-\mathrm{H} ; 1.28, \mathrm{t}(J=4.1 \mathrm{~Hz})$, PMe.

To sample of 1 b ($11 \mathrm{mg}, 0.028 \mathrm{mmol}$) was added MeI ($1.8 \mu \mathrm{~L}, 0.028$ mmol). The ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting colorless solution showed quantitative conversion to $1,2,6,4,3,5-\left[\mathrm{IrMe} \mathrm{I}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\right]: \delta 0.49$ and $0.51, \mathrm{t}\left({ }^{3} J(\mathrm{P}, \mathrm{H})=5.8\right.$ and 9 Hz), IrMe; $1.27, \mathrm{t}$ (virtual coupling $J_{\mathrm{app}}=$ 3.8 Hz), PMe.

Acknowledgment. We wish to thank R. Hoffman (Cornell University) for discussions and the NSF for support.

Decamethylrhenocene, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Re}$

Judith A. Bandy, ${ }^{1 \mathrm{a}}$ F. Geoffrey N. Cloke, ${ }^{*, 1 \mathrm{lb}}$ Glyn Cooper, ${ }^{\text {1a }}$ Jeremy P. Day, ${ }^{\text {,b }}$ Reuben B. Girling, ${ }^{1 \mathrm{c}}$ Robin G. Graham, ${ }^{1 \mathrm{~d}}$ Jennifer C. Green, ${ }^{1 \mathrm{a}}$ Roger Grinter, ${ }^{\text {1d }}$ and Robin N. Perutz ${ }^{\text {Ic }}$
Contribution from the School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K., the Department of Chemistry, University of York, York Y01 5DD, U.K., the School of Chemical Sciences, University of East Anglia, Norwich NR4 7 TJ, U.K., the Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K., and the Chemical Crystallography Laboratory, 9 Parks Road, Oxford OXI 3PD, U.K. Received August 13, 1987

Abstract

The synthesis of $\mathrm{Cp}_{2}{ }_{2} \mathrm{ReH}\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ from Re vapor and $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{H}$ and its photochemical conversion into $\mathrm{Cp}{ }_{2} \mathrm{Re}$ are described. The X-ray crystal structure of the latter has been determined and shows the molecule to possess the parallel ring, eclipsed, sandwich structure (space group $P 2_{1} / m, a=8.620(3), b=14.593$ (5), $c=7.923$ (3) $\AA, Z=2$, refinement on 1871 reflections, $R_{w}=0.037$). The solid-state magnetic moment reveals Curie-Weiss behavior consistent with a ${ }^{2} \mathrm{~A}_{1}$ (or $\mathrm{A}_{1 / 2}$) ground state. Visible absorption and laser-induced fluorescence spectra in Ar and N_{2} matrices showed a strong LMCT band with excellently resolved vibrational structure. The same transition is observed at room temperature in solution. Magnetic circular dichroism (MCD) spectra in Ar matrices show an intense signal with an inverse temperature dependence of intensity (C term). The value of $g_{\|}$is determined from the magnetization curve of the MCD spectrum as 4.87 (19). Measurement of the ESR spectrum of $\mathrm{Cp}_{2}{ }_{2} \mathrm{Re}$ in frozen toluene at 4 K showed that the molecule also has an $\mathrm{E}_{5 / 2}$ ground state under these conditions with $g_{\|}=5.081$ (3), $A_{\mathrm{Re}}=1585$ (3) MHz . The gas-phase photoelectron spectrum (He I and He II) proved inconsistent with an $\mathrm{E}_{5 / 2}$ state for the neutral molecule and is best described by an equilibrium between $\mathrm{A}_{1 / 2}$ and $\mathrm{E}_{5 / 2}$ states. The value of the solution magnetic moment at room temperature ($\mu_{\text {eff }}=1.95(10) \mu_{B}$) also suggests an equilibrium between electronic states.

There is overwhelming evidence that the electronic structure of the metallocenes and other parallel sandwich complexes is well described by the ligand field model. ${ }^{2-5}$ According to the LF model the d orbitals are split into three sets: in order of decreasing binding energy $\mathrm{e}_{2}\left(x y, x^{2}-y^{2}\right), \mathrm{a}_{1}\left(z^{2}\right)$, and $\mathrm{e}_{1}(x z, y z)$. (We use symbols indicating D_{5} or D_{6} symmetry, since various rotamers may be present.) When the complex has a d^{5} configuration, the choice of electronic ground state is very sensitive to the particular combination of metal and ligand. Of the three possible configurations (Figure 1), the ${ }^{2} \mathrm{~A}_{1}$ state is adopted by all the bis(arene) metal complexes, ${ }^{6}$ while $\mathrm{Cp}_{2} \mathrm{Fe}^{+}, \mathrm{Cp}^{*} \mathrm{Fe}^{+}$, and $\mathrm{Cp}^{*}{ }_{2} \mathrm{Mn}$ adopt ${ }^{2} \mathrm{E}_{2}$ states $\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right){ }^{2-4,7,8}$ In contrast,

[^8]$\mathrm{Cp}_{2} \mathrm{Mn}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Mn}$ either may be switched between ${ }^{2} \mathrm{E}_{2}$ and ${ }^{6} \mathrm{~A}_{1}$ states by a change of host material or exhibit an equilibrium between them. ${ }^{3,5,9}$ The ${ }^{2} \mathrm{E}_{2}$ state is subject to Jahn-Teller distortion which has been observed as both dynamic and static effects on the ESR spectra of manganocenes. ${ }^{5,9}$ A significant distortion from $D_{5 d}$ symmetry has been established for $\mathrm{Cp}_{2} \mathrm{Mn}$ in the crystal. ${ }^{10}$

In contrast to the first-row metallocenes, the d^{5} configuration appeared until now to be highly unstable for third-row metallocenes. Thus the only metallocene characterized was rhenocene, $\mathrm{Cp}_{2} \mathrm{Re}$, formed by photolysis of $\mathrm{Cp}_{2} \mathrm{ReH}$ in CO or N_{2} matrices at ca. $20 \mathrm{~K} .^{11}$ For a third-row metal, the ${ }^{2} \mathrm{E}_{2}$ state is subject to
(7) Duggan, D. M.; Hendrickson, D. N. Inorg. Chem. 1975, 14, 955.
(8) Robbins, J. L.; Edelstein, N. M.; Cooper, S. R.; Smart, J. C. J. Am. Chem. Soc. 1979, 101, 3853.
(9) Ammeter, J. H.; Bucher, B.; Oswald, N. J. Am. Chem. Soc. 1974, 96, 7833. Ammeter, J. H.; Oswald, N.; Bucher, R. Helv. Chim. Acta 1975, 58, 671. Ammeter, J. H.; Zoller, L.; Bachmann, J.; Baltzer, P.; Gamp, E.; Bucher, R.; Deiss, E. Ibid. 1981, 64, 1063. Hebendanz, N.; Köhler, F. H.; Muller, G.; Riede, J. J. Am. Chem. Soc. 1986, 108, 3281.
(10) Freyberg, D. P.; Robbins, J. L.; Raymond, K. N.; Smart, J. C. J. Am. Chem. Soc. 1979, 101, 892.
(11) Chetwynd-Talbot, J.; Grebenik, P.; Perutz, R. N.; Powell, M. H. A. Inorg. Chem. 1983, 22, 1675. Cox, P. A.; Grebenik, P.; Perutz, R. N.; Graham, R. G.; Grinter, R. Chem. Phys. Lett. 1984, 108, 415.

[^0]: ${ }^{\dagger}$ Address for this author: Department of Chemistry, Cornell University, Ithaca, NY 14853. Present address: Department of Chemistry, University of Houston, Houston, TX 77004.

[^1]: (1) (a) Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 3148-60. (b) Johnson, C. E.; Fisher, B. J.; Eisenberg, R. J. Am. Chem. Soc. 1983, 105, 7772-4. (c) Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 6531-40. (d) Kunin, A. J.; Farid, R.; Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 5315-7. (e) Eisenberg et al. ${ }^{\text {Id }}$ have evidence that the transition state is not late.
 (2) (a) Crabtree, R. H.; Uriarte, R. J. Inorg. Chem. 1983, 22, 4152-54. (b) Burk, M. J.; Crabtree, R, H. Inorg. Chem. 1986, 25, 931-2.

[^2]: (3) (a) Kitaura, K.; Obara, S.; Morokuma, K. J. Am. Chem. Soc. 1981, 103, 2891. Noell, J. O.; Hay, P. J. J. Am. Chem. Soc. 1982, 104, 4578. Jean, Y.; Lledos, A., personal communication, 1987. (b) Hoffmann, R. In Frontiers of Chemistry; Laidler, K. J., Ed.; Pergamon: New York, 1982; pp 247-263.
 (4) Bennett, M. A.; Crisp, G. T. Organometallics 1986, 5, 1800.
 (5) (a) Thorn, D. L. Organometallics 1982, l, 197-204. (b) Milstein, D. Acc. Chem. Res. 1984, 17, 221-6. (c) Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 1537-50. (d) Deeming, A. J.; Shaw, B. L. J. Chem. Soc. A 1969, 1/28-34. Hyde, E. M.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1975. 765-7.
 (6) Rees, W. M.; Churchill, M. R.; Li, Y.-J.; Atwood, J. D. Organometallics 1985, 4, 1162-7.

[^3]: (7) (a) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1984, 106, 1650-63. (b) Drouin, M.; Harrod, J. F. Inorg. Chem. 1983, 22, 999-1001.

[^4]: (8) (a) Wolczanski, P. J., personal communication, 1986. (b) Eisenberg ${ }^{8 c}$ points out that CO and Me or Ph are high trans effect ligands for quite different reasons, CO is a strong π-acceptor, and Me or Ph is a strong σ-donor. Me and CO might therefore have a strong tendency to remain mutually trans by the antisymbiotic ${ }^{\text {8d }}$ effect. (c) Eisenberg, R., personal communication, 1988. (d) Pearson, R. G. Inorg. Chem. 1973, 12, 712.

[^5]: (9) (a) Saillard, J. Y.; Hoffmann, R. J. Am. Chem. Soc. 1984, l06, 2006-26. (b) Sevin, A. Nouv. J. Chim. 1981, 5, 233-41. (c) Sevin, A.; Chaqui, P. Nouv. J. Chim. 1983, 7, 353-60. (d) Wheeler, R.; Hoffmann, R., personal communications, 1986-8. (e) Jean, Y.; Lledos, A., personal com-

[^6]: (10) McGinnety, J. A.; Ibers, J. A. Chem. Commun. 1968, 235-37.
 (11) Manojlovic-Muir, L.; Muir, K. W.; Ibers, J. A. Discuss. Faraday Soc. 1969, 47, 84-92
 (12) This adduct is known ${ }^{5 b}$ but its stereochemistry has not been assigned.

[^7]: (13) Vaska, L. Acc. Chem. Res. 1968, l, 335-44. Payne, N. C.; Ibers, J. A. Inorg. Chem. 1969, 8, 2714-8.
 (14) Deeming, A. J.; Shaw, B. L. J. Chem. Soc. A 1968, 1887-9
 (15) Labinger, J. A.; Osborn, J. A. Inorg. Chem. 1980, 19, 3230-6. Labinger, J. A.; Osborn, J. A.; Coville, N, J. Inorg. Chem, 1980, 19, 3236-43. Yoneda, G.; Blake, D. M. Inorg. Chem. 1981, 20, 67-71.
 (16) Shapley, J. R.; Osborn, J. A. J. Am. Chem. Soc. 1970, 92, 6976-8. Lavecchia, M.; Rossi, M.; Sacco, A. Inorg. Chim. Acta 1970, 4, 29-32. (17) Harrod, J. F.; Gilson, D. F. R.; Charles, R. Can. J. Chem. 1969, 47, 2205-8. Glockling, F.; Wilbey, M. D. J. Chem. Soc. A 1970, 1675-81. Harrod. J. F.; Hamer, G.; Yorke, W. J. Am. Chem. Soc. 1979, 10l. 3987-9. Harrod, J. F.; Yorke, W. Inorg. Chem. 1981, 20, 1156-9.
 (18) Fawcett, J. P.; Harrod, F. J. Organometal. Chem. 1976, 113, 245-8.

[^8]: (1) (a) University of Oxford. (b) University of Sussex. (c) University of York. (d) University of East Anglia.
 (2) Warren, K. D. Struct. Bonding (Berlin) 1976, 27, 45.
 (3) Green, J. C. Struct. Bonding (Berlin) 1981, 43, 37.
 (4) Robbins, J. L.; Edelstein, N.; Spencer, B.; Smart, J. C. J. Am. Chem. Soc. 1982, 104, 1882.
 (5) Ammeter, J. H. J. Magn. Reson. 1978, 30, 229.
 (6) Cloke, F. G. N.; Dix, A. N.; Green, J. C.; Perutz, R. N.; Seddon, E. A. Organometallics 1983, 2, 1150 . Bandy, J. A.; Berry, A.; Green, M. L. H.; Perutz, R. N.; Prout, K.; Verpeaux, J. N. J. Chem. Soc., Chem. Commun. 1984, 729. Andrews, M. P.; Mattar, S. B.; Ozin, G. A. J. Phys. Chem. 1986, 90. 1037.

